C - Collinearity
该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。
C - Collinearity
Score : $300$ points
Problem Statement
We have $N$ points on a two-dimensional infinite coordinate plane.
The $i$-th point is at $(x_i,y_i)$.
Is there a triple of distinct points lying on the same line among the $N$ points?
Constraints
- All values in input are integers.
- $3 \leq N \leq 10^2$
- $|x_i|, |y_i| \leq 10^3$
- If $i \neq j$, $(x_i, y_i) \neq (x_j, y_j)$.
Input
Input is given from Standard Input in the following format:
Output
If there is a triple of distinct points lying on the same line, print Yes
; otherwise, print No
.
4
0 1
0 2
0 3
1 1
Yes
The three points $(0, 1), (0, 2), (0, 3)$ lie on the line $x = 0$.
14
5 5
0 1
2 5
8 0
2 1
0 0
3 6
8 6
5 9
7 9
3 4
9 2
9 8
7 2
No
9
8 2
2 3
1 3
3 7
1 0
8 8
5 6
9 7
0 1
Yes