#AT1669. C - Collinearity

C - Collinearity

C - Collinearity

Score : $300$ points

Problem Statement

We have $N$ points on a two-dimensional infinite coordinate plane.

The $i$-th point is at $(x_i,y_i)$.

Is there a triple of distinct points lying on the same line among the $N$ points?

Constraints

  • All values in input are integers.
  • $3 \leq N \leq 10^2$
  • $|x_i|, |y_i| \leq 10^3$
  • If $i \neq j$, $(x_i, y_i) \neq (x_j, y_j)$.

Input

Input is given from Standard Input in the following format:

NN

x1x_1 y1y_1

\vdots

xNx_N yNy_N

Output

If there is a triple of distinct points lying on the same line, print Yes; otherwise, print No.


4
0 1
0 2
0 3
1 1
Yes

The three points $(0, 1), (0, 2), (0, 3)$ lie on the line $x = 0$.


14
5 5
0 1
2 5
8 0
2 1
0 0
3 6
8 6
5 9
7 9
3 4
9 2
9 8
7 2
No

9
8 2
2 3
1 3
3 7
1 0
8 8
5 6
9 7
0 1
Yes