#F. E - Transformable Teacher

    传统题 1000ms 256MiB

E - Transformable Teacher

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

E - Transformable Teacher

Score : $500$ points

Problem Statement

There are $N$ children in a kindergarten. The height of the $i$-th child is $H_i$. Here, $N$ is an odd number.

You, the teacher, and these children - $N+1$ people in total - will make $\large\frac{N+1}2$ pairs.

Your objective is to minimize the sum of the differences in height over those pairs. That is, you want to minimize $\displaystyle \sum_{i=1}^{(N+1)/2}|x_i-y_i|$, where $(x_i, y_i)$ is the pair of heights of people in the $i$-th pair.

You have $M$ forms that you can transform into. Your height in the $i$-th form is $W_i$.

Find the minimum possible sum of the differences in height over all pairs, achieved by optimally choosing your form and making pairs.

Constraints

  • All values in input are integers.
  • $1 \leq N, M \leq 2 \times 10^5$
  • $N$ is an odd number.
  • $1 \leq H_i \leq 10^9$
  • $1 \leq W_i \leq 10^9$

Input

Input is given from Standard Input in the following format:

NN MM

H1H_1 \dots HNH_N

W1W_1 \dots WMW_M

Output

Print the minimum possible sum of the differences in height over all pairs, achieved by optimally choosing your form and making pairs.


5 3
1 2 3 4 7
1 3 8
3

The minimum is minimized by choosing the form with the height $8$ and making pairs with heights $(1, 2)$, $(3, 4)$, and $(7, 8)$.


7 7
31 60 84 23 16 13 32
96 80 73 76 87 57 29
34

15 10
554 525 541 814 661 279 668 360 382 175 833 783 688 793 736
496 732 455 306 189 207 976 73 567 759
239

2024春季入门组刷题营(十一)

未参加
状态
已结束
规则
IOI
题目
8
开始于
2024-5-26 13:00
结束于
2024-5-26 15:00
持续时间
2 小时
主持人
参赛人数
10