#D. D - Sum of Large Numbers

    传统题 1000ms 256MiB

D - Sum of Large Numbers

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

D - Sum of Large Numbers

Score : $400$ points

Problem Statement

We have $N+1$ integers: $10^{100}$, $10^{100}+1$, ..., $10^{100}+N$.

We will choose $K$ or more of these integers. Find the number of possible values of the sum of the chosen numbers, modulo $(10^9+7)$.

Constraints

  • $1 \leq N \leq 2\times 10^5$
  • $1 \leq K \leq N+1$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN KK

Output

Print the number of possible values of the sum, modulo $(10^9+7)$.


3 2
10

The sum can take $10$ values, as follows:

  • $(10^{100})+(10^{100}+1)=2\times 10^{100}+1$
  • $(10^{100})+(10^{100}+2)=2\times 10^{100}+2$
  • $(10^{100})+(10^{100}+3)=(10^{100}+1)+(10^{100}+2)=2\times 10^{100}+3$
  • $(10^{100}+1)+(10^{100}+3)=2\times 10^{100}+4$
  • $(10^{100}+2)+(10^{100}+3)=2\times 10^{100}+5$
  • $(10^{100})+(10^{100}+1)+(10^{100}+2)=3\times 10^{100}+3$
  • $(10^{100})+(10^{100}+1)+(10^{100}+3)=3\times 10^{100}+4$
  • $(10^{100})+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+5$
  • $(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+6$
  • $(10^{100})+(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=4\times 10^{100}+6$

200000 200001
1

We must choose all of the integers, so the sum can take just $1$ value.


141421 35623
220280457

2024春季入门组刷题营(九)

未参加
状态
已结束
规则
IOI
题目
8
开始于
2024-5-12 13:00
结束于
2024-5-12 15:00
持续时间
2 小时
主持人
参赛人数
11