#AT1562. D - Sum of Large Numbers
D - Sum of Large Numbers
D - Sum of Large Numbers
Score : $400$ points
Problem Statement
We have $N+1$ integers: $10^{100}$, $10^{100}+1$, ..., $10^{100}+N$.
We will choose $K$ or more of these integers. Find the number of possible values of the sum of the chosen numbers, modulo $(10^9+7)$.
Constraints
- $1 \leq N \leq 2\times 10^5$
- $1 \leq K \leq N+1$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the number of possible values of the sum, modulo $(10^9+7)$.
3 2
10
The sum can take $10$ values, as follows:
- $(10^{100})+(10^{100}+1)=2\times 10^{100}+1$
- $(10^{100})+(10^{100}+2)=2\times 10^{100}+2$
- $(10^{100})+(10^{100}+3)=(10^{100}+1)+(10^{100}+2)=2\times 10^{100}+3$
- $(10^{100}+1)+(10^{100}+3)=2\times 10^{100}+4$
- $(10^{100}+2)+(10^{100}+3)=2\times 10^{100}+5$
- $(10^{100})+(10^{100}+1)+(10^{100}+2)=3\times 10^{100}+3$
- $(10^{100})+(10^{100}+1)+(10^{100}+3)=3\times 10^{100}+4$
- $(10^{100})+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+5$
- $(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+6$
- $(10^{100})+(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=4\times 10^{100}+6$
200000 200001
1
We must choose all of the integers, so the sum can take just $1$ value.
141421 35623
220280457
相关
在下列比赛中: