#B. C - Walk on Multiplication Table

    传统题 1000ms 256MiB

C - Walk on Multiplication Table

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

C - Walk on Multiplication Table

Score : $300$ points

Problem Statement

Takahashi is standing on a multiplication table with infinitely many rows and columns.

The square $(i,j)$ contains the integer $i \times j$. Initially, Takahashi is standing at $(1,1)$.

In one move, he can move from $(i,j)$ to either $(i+1,j)$ or $(i,j+1)$.

Given an integer $N$, find the minimum number of moves needed to reach a square that contains $N$.

Constraints

  • $2 \leq N \leq 10^{12}$
  • $N$ is an integer.

Input

Input is given from Standard Input in the following format:

NN

Output

Print the minimum number of moves needed to reach a square that contains the integer $N$.


10
5

$(2,5)$ can be reached in five moves. We cannot reach a square that contains $10$ in less than five moves.


50
13

$(5, 10)$ can be reached in $13$ moves.


10000000019
10000000018

Both input and output may be enormous.

2024暑假入门组刷题营第三期(四)

未参加
状态
已结束
规则
IOI
题目
8
开始于
2024-7-11 13:00
结束于
2024-7-11 15:00
持续时间
2 小时
主持人
参赛人数
8