#AT2527. C - Gap Existence

C - Gap Existence

当前没有测试数据。

C - Gap Existence

Score : $300$ points

Problem Statement

You are given a sequence of $N$ numbers: $A=(A_1,\ldots,A_N)$.

Determine whether there is a pair $(i,j)$ with $1\leq i,j \leq N$ such that $A_i-A_j=X$.

Constraints

  • $2 \leq N \leq 2\times 10^5$
  • $-10^9 \leq A_i \leq 10^9$
  • $-10^9 \leq X \leq 10^9$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN XX

A1A_1 \ldots ANA_N

Output

Print Yes if there is a pair $(i,j)$ with $1\leq i,j \leq N$ such that $A_i-A_j=X$, and No otherwise.


6 5
3 1 4 1 5 9
Yes

We have $A_6-A_3=9-4=5$.


6 -4
-2 -7 -1 -8 -2 -8
No

There is no pair $(i,j)$ such that $A_i-A_j=-4$.


2 0
141421356 17320508
Yes

We have $A_1-A_1=0$.