#AT2527. C - Gap Existence
C - Gap Existence
当前没有测试数据。
C - Gap Existence
Score : $300$ points
Problem Statement
You are given a sequence of $N$ numbers: $A=(A_1,\ldots,A_N)$.
Determine whether there is a pair $(i,j)$ with $1\leq i,j \leq N$ such that $A_i-A_j=X$.
Constraints
- $2 \leq N \leq 2\times 10^5$
- $-10^9 \leq A_i \leq 10^9$
- $-10^9 \leq X \leq 10^9$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Output
Print Yes
if there is a pair $(i,j)$ with $1\leq i,j \leq N$ such that $A_i-A_j=X$, and No
otherwise.
6 5
3 1 4 1 5 9
Yes
We have $A_6-A_3=9-4=5$.
6 -4
-2 -7 -1 -8 -2 -8
No
There is no pair $(i,j)$ such that $A_i-A_j=-4$.
2 0
141421356 17320508
Yes
We have $A_1-A_1=0$.