#AT2513. E - 2xN Grid

E - 2xN Grid

当前没有测试数据。

E - 2xN Grid

Score : $500$ points

Problem Statement

We have a grid with $2$ rows and $L$ columns. Let $(i,j)$ denote the square at the $i$-th row from the top $(i\in\lbrace1,2\rbrace)$ and $j$-th column from the left $(1\leq j\leq L)$. $(i,j)$ has an integer $x _ {i,j}$ written on it.

Find the number of integers $j$ such that $x _ {1,j}=x _ {2,j}$.

Here, the description of $x _ {i,j}$ is given to you as the run-length compressions of $(x _ {1,1},x _ {1,2},\ldots,x _ {1,L})$ and $(x _ {2,1},x _ {2,2},\ldots,x _ {2,L})$ into sequences of lengths $N _ 1$ and $N _ 2$, respectively: $((v _ {1,1},l _ {1,1}),\ldots,(v _ {1,N _ 1},l _ {1,N _ 1}))$ and $((v _ {2,1},l _ {2,1}),\ldots,(v _ {2,N _ 2},l _ {2,N _ 2}))$.

Here, the run-length compression of a sequence $A$ is a sequence of pairs $(v _ i,l _ i)$ of an element $v _ i$ of $A$ and a positive integer $l _ i$ obtained as follows.

  1. Split $A$ between each pair of different adjacent elements.
  2. For each sequence $B _ 1,B _ 2,\ldots,B _ k$ after the split, let $v _ i$ be the element of $B _ i$ and $l _ i$ be the length of $B _ i$.

Constraints

  • $1\leq L\leq 10 ^ {12}$
  • $1\leq N _ 1,N _ 2\leq 10 ^ 5$
  • $1\leq v _ {i,j}\leq 10 ^ 9\ (i\in\lbrace1,2\rbrace,1\leq j\leq N _ i)$
  • $1\leq l _ {i,j}\leq L\ (i\in\lbrace1,2\rbrace,1\leq j\leq N _ i)$
  • $v _ {i,j}\neq v _ {i,j+1}\ (i\in\lbrace1,2\rbrace,1\leq j\lt N _ i)$
  • $l _ {i,1}+l _ {i,2}+\cdots+l _ {i,N _ i}=L\ (i\in\lbrace1,2\rbrace)$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

LL N1N _ 1 N2N _ 2

v1,1v _ {1,1} l1,1l _ {1,1}

v1,2v _ {1,2} l1,2l _ {1,2}

\vdots

v1,N1v _ {1,N _ 1} l1,N1l _ {1,N _ 1}

v2,1v _ {2,1} l2,1l _ {2,1}

v2,2v _ {2,2} l2,2l _ {2,2}

\vdots

v2,N2v _ {2,N _ 2} l2,N2l _ {2,N _ 2}

Output

Print a single line containing the answer.


8 4 3
1 2
3 2
2 3
3 1
1 4
2 1
3 3
4

The grid is shown below.

We have four integers $j$ such that $x _ {1,j}=x _ {2,j}$: $j=1,2,5,8$. Thus, you should print $4$.


10000000000 1 1
1 10000000000
1 10000000000
10000000000

Note that the answer may not fit into a $32$-bit integer.


1000 4 7
19 79
33 463
19 178
33 280
19 255
33 92
34 25
19 96
12 11
19 490
33 31
380