#AT2430. B - Multi Test Cases

B - Multi Test Cases

当前没有测试数据。

B - Multi Test Cases

Score : $200$ points

Problem Statement

In this problem, an input file contains multiple test cases.
You are first given an integer $T$. Solve the following problem for $T$ test cases.

  • We have $N$ positive integers $A_1, A_2, ..., A_N$. How many of them are odd?

Constraints

  • $1 \leq T \leq 100$
  • $1 \leq N \leq 100$
  • $1 \leq A_i \leq 10^9$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format, where $\text{test}_i$ represents the $i$-th test case:

TT

test1\text{test}_1

test2\text{test}_2

\vdots

testT\text{test}_T

Each test case is in the following format:

``` $N$ $A_1$ $A_2$ $\dots$ $A_N$ ```

Output

Print $T$ lines. The $i$-th line should contain the answer for the $i$-th test case.


4
3
1 2 3
2
20 23
10
6 10 4 1 5 9 8 6 5 1
1
1000000000
2
1
5
0

This input contains four test cases.

The second and third lines correspond to the first test case, where $N = 3, A_1 = 1, A_2 = 2, A_3 = 3$.
We have two odd numbers in $A_1$, $A_2$, and $A_3$, so the first line should contain $2$.