#AT2396. Ex - Sum of Prod of Min
Ex - Sum of Prod of Min
当前没有测试数据。
Ex - Sum of Prod of Min
Score : $600$ points
Problem Statement
You are given positive integers $N$ and $M$. Here, it is guaranteed that $N\leq M \leq 2N$.
Print the sum, modulo $200\ 003$ (a prime), of the following value over all sequences of positive integers $S=(S_1,S_2,\dots,S_N)$ such that $\displaystyle \sum_{i=1}^{N} S_i = M$ (notice the unusual modulo):
- $\displaystyle \prod_{k=1}^{N} \min(k,S_k)$.
Constraints
- $1 \leq N \leq 10^{12}$
- $N \leq M \leq 2N$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Output
Print the answer as an integer.
3 5
14
There are six sequences $S$ that satisfy the condition: $S=(1,1,3), S=(1,2,2), S=(1,3,1), S=(2,1,2), S=(2,2,1), S=(3,1,1)$.
The value $\displaystyle \prod_{k=1}^{N} \min(k,S_k)$ for each of those $S$ is as follows.
- $S=(1,1,3)$ : $1\times 1 \times 3 = 3$
- $S=(1,2,2)$ : $1\times 2 \times 2 = 4$
- $S=(1,3,1)$ : $1\times 2 \times 1 = 2$
- $S=(2,1,2)$ : $1\times 1 \times 2 = 2$
- $S=(2,2,1)$ : $1\times 2 \times 1 = 2$
- $S=(3,1,1)$ : $1\times 1 \times 1 = 1$
Thus, you should print their sum: $14$.
1126 2022
40166
Print the sum modulo $200\ 003$.
1000000000000 1500000000000
180030