#AT2254. B - Triangle (Easier)

B - Triangle (Easier)

当前没有测试数据。

B - Triangle (Easier)

Score : $200$ points

Problem Statement

You are given a simple undirected graph with $N$ vertices and $M$ edges. The vertices are numbered $1, \dots, N$, and the $i$-th $(1 \leq i \leq M)$ edge connects Vertex $U_i$ and Vertex $V_i$.

Find the number of tuples of integers $a, b, c$ that satisfy all of the following conditions:

  • $1 \leq a \lt b \lt c \leq N$
  • There is an edge connecting Vertex $a$ and Vertex $b$.
  • There is an edge connecting Vertex $b$ and Vertex $c$.
  • There is an edge connecting Vertex $c$ and Vertex $a$.

Constraints

  • $3 \leq N \leq 100$
  • $1 \leq M \leq \frac{N(N - 1)}{2}$
  • $1 \leq U_i \lt V_i \leq N \, (1 \leq i \leq M)$
  • $(U_i, V_i) \neq (U_j, V_j) \, (i \neq j)$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

U1U_1 V1V_1

\vdots

UMU_M VMV_M

Output

Print the answer.


5 6
1 5
4 5
2 3
1 4
3 5
2 5
2

$(a, b, c) = (1, 4, 5), (2, 3, 5)$ satisfy the conditions.


3 1
1 2
0

7 10
1 7
5 7
2 5
3 6
4 7
1 5
2 4
1 3
1 6
2 7
4