#AT2254. B - Triangle (Easier)
B - Triangle (Easier)
当前没有测试数据。
B - Triangle (Easier)
Score : $200$ points
Problem Statement
You are given a simple undirected graph with $N$ vertices and $M$ edges. The vertices are numbered $1, \dots, N$, and the $i$-th $(1 \leq i \leq M)$ edge connects Vertex $U_i$ and Vertex $V_i$.
Find the number of tuples of integers $a, b, c$ that satisfy all of the following conditions:
- $1 \leq a \lt b \lt c \leq N$
- There is an edge connecting Vertex $a$ and Vertex $b$.
- There is an edge connecting Vertex $b$ and Vertex $c$.
- There is an edge connecting Vertex $c$ and Vertex $a$.
Constraints
- $3 \leq N \leq 100$
- $1 \leq M \leq \frac{N(N - 1)}{2}$
- $1 \leq U_i \lt V_i \leq N \, (1 \leq i \leq M)$
- $(U_i, V_i) \neq (U_j, V_j) \, (i \neq j)$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
5 6
1 5
4 5
2 3
1 4
3 5
2 5
2
$(a, b, c) = (1, 4, 5), (2, 3, 5)$ satisfy the conditions.
3 1
1 2
0
7 10
1 7
5 7
2 5
3 6
4 7
1 5
2 4
1 3
1 6
2 7
4