#AT2228. Ex - Odd Steps
Ex - Odd Steps
当前没有测试数据。
Ex - Odd Steps
Score : $600$ points
Problem Statement
Find the number, modulo $998244353$, of sequences $X$ that satisfy all of the following conditions.
- Every term in $X$ is a positive odd number.
- The sum of the terms in $X$ is $S$.
- The prefix sums of $X$ contain none of $A_1, \dots, A_N$. Formally, if we define $Y_i = X_1 + \dots + X_i$ for each $i$, then $Y_i \neq A_j$ holds for all integers $i$ and $j$ such that $1 \leq i \leq |X|$ and $1 \leq j \leq N$.
Constraints
- $1 \leq N \leq 10^5$
- $1 \leq A_1 \lt A_2 \lt \dots \lt A_N \lt S \leq 10^{18}$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
3 7
2 4 5
3
The following three sequences satisfy the conditions.
- $(1, 5, 1)$
- $(3, 3, 1)$
- $(7)$
5 60
10 20 30 40 50
37634180
10 1000000000000000000
1 2 4 8 16 32 64 128 256 512
75326268