#AT2186. F - Operations on a Matrix
F - Operations on a Matrix
当前没有测试数据。
F - Operations on a Matrix
Score : $500$ points
Problem Statement
We have an $N \times M$ matrix, whose elements are initially all $0$.
Process $Q$ given queries. Each query is in one of the following formats.
1 l r x
: Add $x$ to every element in the $l$-th, $(l+1)$-th, $\ldots$, and $r$-th column.2 i x
: Replace every element in the $i$-th row with $x$.3 i j
: Print the $(i, j)$-th element.
Constraints
- $1 \leq N, M, Q \leq 2 \times 10^5$
- Every query is in one of the formats listed in the Problem Statement.
- For each query in the format
1 l r x
, $1 \leq l \leq r \leq M$ and $1 \leq x \leq 10^9$. - For each query in the format
2 i x
, $1 \leq i \leq N$ and $1 \leq x \leq 10^9$. - For each query in the format
3 i j
, $1 \leq i \leq N$ and $1 \leq j \leq M$. - At least one query in the format
3 i j
is given. - All values in input are integers.
Input
Input is given from Standard Input in the following format:
$\mathrm{Query}_i$, which denotes the $i$-th query, is in one of the following formats:
``` $1$ $l$ $r$ $x$ ``` ``` $2$ $i$ $x$ ``` ``` $3$ $i$ $j$ ```Output
For each query in the format 3 i j
, print a single line containing the answer.
3 3 9
1 1 2 1
3 2 2
2 3 2
3 3 3
3 3 1
1 2 3 3
3 3 2
3 2 3
3 1 2
1
2
2
5
3
4
The matrix transitions as follows.
$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 2 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 3 \\ 1 & 4 & 3 \\ 2 & 5 & 5 \\ \end{pmatrix}$
1 1 10
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
3 1 1
9000000000
10 10 10
1 1 8 5
2 2 6
3 2 1
3 4 7
1 5 9 7
3 3 2
3 2 8
2 8 10
3 8 8
3 1 10
6
5
5
13
10
0