#AT2185. E - Distance Sequence
E - Distance Sequence
当前没有测试数据。
E - Distance Sequence
Score : $500$ points
Problem Statement
How many integer sequences $A=(A_1,\ldots,A_N)$ of length $N$ satisfy all the conditions below?
-
$1\le A_i \le M$ $(1 \le i \le N)$
-
$|A_i - A_{i+1}| \geq K$ $(1 \le i \le N - 1)$
Since the count can be enormous, find it modulo $998244353$.
Constraints
- $2 \leq N \leq 1000$
- $1 \leq M \leq 5000$
- $0 \leq K \leq M-1$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the count modulo $998244353$.
2 3 1
6
The following $6$ sequences satisfy the conditions.
- $(1,2)$
- $(1,3)$
- $(2,1)$
- $(2,3)$
- $(3,1)$
- $(3,2)$
3 3 2
2
The following $2$ sequences satisfy the conditions.
- $(1,3,1)$
- $(3,1,3)$
100 1000 500
657064711
Print the count modulo $998244353$.