#AT2143. C - Dice Sum
C - Dice Sum
C - Dice Sum
Score : $300$ points
Problem Statement
How many integer sequences of length $N$, $A=(A_1, \ldots, A_N)$, satisfy all of the conditions below?
-
$1\le A_i \le M$ $(1 \le i \le N)$
-
$\displaystyle\sum _{i=1}^N A_i \leq K$
Since the count can get enormous, find it modulo $998244353$.
Constraints
- $1 \leq N, M \leq 50$
- $N \leq K \leq NM$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
2 3 4
6
The following six sequences satisfy the conditions.
- $(1,1)$
- $(1,2)$
- $(1,3)$
- $(2,1)$
- $(2,2)$
- $(3,1)$
31 41 592
798416518
Be sure to print the count modulo $998244353$.
相关
在下列比赛中: