#AT2137. E - Max Min
E - Max Min
当前没有测试数据。
E - Max Min
Score : $500$ points
Problem Statement
We have a number sequence $A = (A_1, A_2, \dots, A_N)$ of length $N$ and integers $X$ and $Y$. Find the number of pairs of integers $(L, R)$ satisfying all the conditions below.
- $1 \leq L \leq R \leq N$
- The maximum value of $A_L, A_{L+1}, \dots, A_R$ is $X$, and the minimum is $Y$.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq A_i \leq 2 \times 10^5$
- $1 \leq Y \leq X \leq 2 \times 10^5$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
4 3 1
1 2 3 1
4
$4$ pairs satisfy the conditions: $(L,R)=(1,3),(1,4),(2,4),(3,4)$.
5 2 1
1 3 2 4 1
0
No pair $(L,R)$ satisfies the condition.
5 1 1
1 1 1 1 1
15
It may hold that $X=Y$.
10 8 1
2 7 1 8 2 8 1 8 2 8
36