#AT2065. E - Range Sums

E - Range Sums

当前没有测试数据。

E - Range Sums

Score : $500$ points

Problem Statement

Takahashi has a secret integer sequence $a$. You know that the length of $a$ is $N$.

You want to guess the contents of $a$. He has promised to give you the following $Q$ additional pieces of information.

  • The $i$-th information: the value $a_{l_i}+a_{l_i+1}+\cdots+a_{r_i}$.

Is it possible to determine the sum of all elements in $a$, $a_1+a_2+\cdots+a_N$, if the $Q$ pieces of promised information are given?

Constraints

  • $1 \leq N \leq 2 \times 10^5$
  • $1 \leq Q \leq \min(2 \times 10^5,\frac{N(N+1)}{2})$
  • $1 \leq l_i \leq r_i \leq N$
  • $(l_i,r_i) \neq (l_j,r_j)\ (i \neq j)$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN QQ

l1l_1 r1r_1

l2l_2 r2r_2

\hspace{0.4cm}\vdots

lQl_Q rQr_Q

Output

If it is possible to determine the sum of all elements in $a$, print Yes; otherwise, print No.


3 3
1 2
2 3
2 2
Yes

From the first and second information, we can find the value $a_1+a_2+a_2+a_3$. By subtracting the value of $a_2$ from it, we can determine the value $a_1+a_2+a_3$.


4 3
1 3
1 2
2 3
No

We can determine the sum of the first $3$ elements of $a$, but not the sum of all elements.


4 4
1 1
2 2
3 3
1 4
Yes

The fourth information directly gives us the sum of all elements.