#AT2059. G - Range Sort Query

G - Range Sort Query

当前没有测试数据。

G - Range Sort Query

Score : $600$ points

Problem Statement

Given is a permutation $P=(P_1,P_2,\ldots,P_N)$ of $1,2,\ldots,N$, and an integer $X$.

Additionally, $Q$ queries are given. The $i$-th query is represented as a triple of numbers $(C_i,L_i,R_i)$. Each query does the following operation on the permutation $P$.

  • If $C_i=1$: sort $P_{L_i},P_{L_i+1},\ldots,P_{R_i}$ in ascending order.
  • If $C_i=2$: sort $P_{L_i},P_{L_i+1},\ldots,P_{R_i}$ in descending order.

In the final permutation $P$ after executing all queries in the given order, find $i$ such that $P_i=X$.

Constraints

  • $1 \leq N \leq 2\times 10^5$
  • $1 \leq Q \leq 2\times 10^5$
  • $1 \leq X \leq N$
  • $(P_1,P_2,\ldots,P_N)$ is a permutation of $(1,2,\ldots,N)$.
  • $1 \leq C_i \leq 2$
  • $1 \leq L_i \leq R_i \leq N$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN QQ XX

P1P_1 P2P_2 \ldots PNP_N

C1C_1 L1L_1 R1R_1

C2C_2 L2L_2 R2R_2

\vdots

CQC_Q LQL_Q RQR_Q

Output

Print the answer.


5 2 1
1 4 5 2 3
1 3 5
2 1 3
3

Initially, the permutation is $P=[1,4,5,2,3]$. The queries change it as follows.

  • $1$-st query sorts the $3$-rd through $5$-th elements in ascending order, making $P=[1,4,2,3,5]$.
  • $2$-nd query sorts the $1$-st through $3$-rd elements in descending order, making $P=[4,2,1,3,5]$.

In the final permutation, we have $P_3=1$, so $3$ should be printed.


7 3 3
7 5 3 1 2 4 6
1 1 7
2 3 6
2 5 7
7

The final permutation is $P=[1,2,6,5,7,4,3]$.