#AT2054. B - Matrix Transposition

B - Matrix Transposition

当前没有测试数据。

B - Matrix Transposition

Score : $200$ points

Problem Statement

You are given an $H$-by-$W$ matrix $A$.
The element at the $i$-th row from the top and $j$-th column from the left of $A$ is $A_{i,j}$.

Let $B$ be a $W$-by-$H$ matrix whose element at the $i$-th row from the top and $j$-th column from the left equals $A_{j, i}$.
That is, $B$ is the transpose of $A$.

Print $B$.

Constraints

  • $1\leq H,W \leq 10^5$
  • $H \times W \leq 10^5$
  • $1 \leq A_{i,j} \leq 10^9$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

HH WW

A1,1A_{1,1} A1,2A_{1,2} \ldots A1,WA_{1,W}

A2,1A_{2,1} A2,2A_{2,2} \ldots A2,WA_{2,W}

\vdots

AH,1A_{H,1} AH,2A_{H,2} \ldots AH,WA_{H,W}

Output

Print $B$ in the following format:

``` $B_{1,1}$ $B_{1,2}$ $\ldots$ $B_{1,H}$ $B_{2,1}$ $B_{2,2}$ $\ldots$ $B_{2,H}$ $\vdots$ $B_{W,1}$ $B_{W,2}$ $\ldots$ $B_{W,H}$ ```
4 3
1 2 3
4 5 6
7 8 9
10 11 12
1 4 7 10
2 5 8 11
3 6 9 12

For example, we have $A_{2,1}=4$, so the element at the $1$-st row from the top and $2$-nd column from the left of the transpose $B$ is $4$.


2 2
1000000000 1000000000
1000000000 1000000000
1000000000 1000000000
1000000000 1000000000