#AT2052. Ex - Distinct Multiples
Ex - Distinct Multiples
当前没有测试数据。
Ex - Distinct Multiples
Score : $600$ points
Problem Statement
Given are positive integers $N$, $M$, and a sequence of positive integers $D = (D_1, \dots, D_N)$.
Find the number of sequences of positive integers $A = (A_1, \dots, A_N)$ that satisfy the following conditions, modulo $998244353$.
- $1 \leq A_i \leq M \, (1 \leq i \leq N)$
- $A_i \neq A_j \, (1 \leq i \lt j \leq N)$
- For each $i \, (1 \leq i \leq N)$, $A_i$ is a multiple of $D_i$.
Constraints
- $2 \leq N \leq 16$
- $1 \leq M \leq 10^{18}$
- $1 \leq D_i \leq M \, (1 \leq i \leq N)$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
3 7
2 3 4
3
The three sequences $A$ that satisfy the conditions are $(2, 3, 4), (2, 6, 4), (6, 3, 4)$.
3 3
1 2 2
0
No sequence $A$ satisfies the conditions.
6 1000000000000000000
380214083 420492929 929717250 666796775 209977152 770361643
325683519
Be sure to find the count modulo $998244353$.