#AT1922. F - Distance Sums 2
F - Distance Sums 2
F - Distance Sums 2
Score : $500$ points
Problem Statement
Given is a tree with $N$ vertices. The vertices are numbered $1,2,\ldots ,N$, and the $i$-th edge is an undirected edge connecting Vertices $u_i$ and $v_i$.
For each integer $i\,(1 \leq i \leq N)$, find $\sum_{j=1}^{N}dis(i,j)$.
Here, $dis(i,j)$ denotes the minimum number of edges that must be traversed to go from Vertex $i$ to Vertex $j$.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $1 \leq u_i < v_i \leq N$
- The given graph is a tree.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print $N$ lines.
The $i$-th line should contain $\sum_{j=1}^{N}dis(i,j)$.
3
1 2
2 3
3
2
3
We have:
$dis(1,1)+dis(1,2)+dis(1,3)=0+1+2=3$,
$dis(2,1)+dis(2,2)+dis(2,3)=1+0+1=2$,
$dis(3,1)+dis(3,2)+dis(3,3)=2+1+0=3$.
2
1 2
1
1
6
1 6
1 5
1 3
1 4
1 2
5
9
9
9
9
9