#AT1922. F - Distance Sums 2

F - Distance Sums 2

F - Distance Sums 2

Score : $500$ points

Problem Statement

Given is a tree with $N$ vertices. The vertices are numbered $1,2,\ldots ,N$, and the $i$-th edge is an undirected edge connecting Vertices $u_i$ and $v_i$.

For each integer $i\,(1 \leq i \leq N)$, find $\sum_{j=1}^{N}dis(i,j)$.

Here, $dis(i,j)$ denotes the minimum number of edges that must be traversed to go from Vertex $i$ to Vertex $j$.

Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq u_i < v_i \leq N$
  • The given graph is a tree.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

u1u_1 v1v_1

u2u_2 v2v_2

\vdots

uN1u_{N-1} vN1v_{N-1}

Output

Print $N$ lines.

The $i$-th line should contain $\sum_{j=1}^{N}dis(i,j)$.


3
1 2
2 3
3
2
3

We have:

$dis(1,1)+dis(1,2)+dis(1,3)=0+1+2=3$,

$dis(2,1)+dis(2,2)+dis(2,3)=1+0+1=2$,

$dis(3,1)+dis(3,2)+dis(3,3)=2+1+0=3$.


2
1 2
1
1

6
1 6
1 5
1 3
1 4
1 2
5
9
9
9
9
9