#AT1827. E - Mod i

E - Mod i

E - Mod i

Score : $500$ points

Problem Statement

Given is a sequence $A$ of $N$ numbers. Find the number of ways to separate $A$ into some number of non-empty contiguous subsequence $B_1, B_2, \ldots, B_k$ so that the following condition is satisfied:

  • For every $i\ (1 \leq i \leq k)$, the sum of elements in $B_i$ is divisible by $i$.

Since the count can be enormous, print it modulo $(10^9+7)$.

Constraints

  • $1 \leq N \leq 3000$
  • $1 \leq A_i \leq 10^{15}$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

A1A_1 A2A_2 \ldots ANA_N

Output

Print the number of ways to separate the sequence so that the condition in the Problem Statement is satisfied, modulo $(10^9+7)$.


4
1 2 3 4
3

We have three ways to separate the sequence, as follows:

  • $(1),(2),(3),(4)$
  • $(1,2,3),(4)$
  • $(1,2,3,4)$

5
8 6 3 3 3
5

10
791754273866483 706434917156797 714489398264550 918142301070506 559125109706263 694445720452148 648739025948445 869006293795825 718343486637033 934236559762733
15

The values in input may not fit into a $32$-bit integer type.