#AT1791. E - Xor Distances
E - Xor Distances
E - Xor Distances
Score : $500$ points
Problem Statement
We have a weighted tree with $N$ vertices. The $i$-th edge connects Vertex $u_i$ and Vertex $v_i$ bidirectionally and has a weight $w_i$.
For a pair of vertices $(x,y)$, let us define $\text{dist}(x,y)$ as follows:
- the XOR of the weights of the edges in the shortest path from $x$ to $y$.
Find $\text{dist}(i,j)$ for every pair $(i,j)$ such that $1 \leq i \lt j \leq N$, and print the sum of those values modulo $(10^9+7)$.
What is $\text{ XOR }$?
The bitwise $\mathrm{XOR}$ of integers $A$ and $B$, $A\ \mathrm{XOR}\ B$, is defined as follows:
- When $A\ \mathrm{XOR}\ B$ is written in base two, the digit in the $2^k$'s place ($k \geq 0$) is $1$ if exactly one of $A$ and $B$ is $1$, and $0$ otherwise.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $1 \leq u_i \lt v_i \leq N$
- $0 \leq w_i \lt 2^{60}$
- The given graph is a tree.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the sum of $\text{dist}(i,j)$, modulo $(10^9+7)$.
3
1 2 1
1 3 3
6
We have $\text{dist}(1,2)=1,$ $\text{dist}(1,3)=3,$ and $\text{dist}(2,3)=2$, for the sum of $6$.
5
3 5 2
2 3 2
1 5 1
4 5 13
62
10
5 7 459221860242673109
6 8 248001948488076933
3 5 371922579800289138
2 5 773108338386747788
6 10 181747352791505823
1 3 803225386673329326
7 8 139939802736535485
9 10 657980865814127926
2 4 146378247587539124
241240228
Print the sum modulo $(10^9+7)$.
相关
在下列比赛中: