#AT1761. E - Filters
E - Filters
E - Filters
Score : $500$ points
Problem Statement
Given are integer sequences $A = (a_1, a_2, \dots, a_N)$, $T = (t_1, t_2, \dots, t_N)$, and $X = (x_1, x_2, \dots, x_Q)$.
Let us define $N$ functions $f_1(x), f_2(x), \dots, f_N(x)$ as follows:
$f_i(x) = \begin{cases} x + a_i & (t_i = 1)\\ \max(x, a_i) & (t_i = 2)\\ \min(x, a_i) & (t_i = 3)\\ \end{cases}$
For each $i = 1, 2, \dots, Q$, find $f_N( \dots f_2(f_1(x_i)) \dots )$.
Constraints
- All values in input are integers.
- $1 ≤ N ≤ 2 \times 10^5$
- $1 ≤ Q ≤ 2 \times 10^5$
- $|a_i| ≤ 10^9$
- $1 ≤ t_i ≤ 3$
- $|x_i| ≤ 10^9$
Input
Input is given from Standard Input in the following format:
Output
Print $Q$ lines. The $i$-th line should contain $f_N( \dots f_2(f_1(x_i)) \dots )$.
3
-10 2
10 1
10 3
5
-15 -10 -5 0 5
0
0
5
10
10
We have $f_1(x) = \max(x, -10), f_2(x) = x + 10, f_3(x) = \min(x, 10)$, thus:
- $f_3(f_2(f_1(-15))) = 0$
- $f_3(f_2(f_1(-10))) = 0$
- $f_3(f_2(f_1(-5))) = 5$
- $f_3(f_2(f_1(0))) = 10$
- $f_3(f_2(f_1(5))) = 10$
相关
在下列比赛中: