#AT1735. C - Kaprekar Number
C - Kaprekar Number
C - Kaprekar Number
Score : $300$ points
Problem Statement
For an integer $x$ not less than $0$, we define $g_1(x), g_2(x), f(x)$ as follows:
- $g_1(x)=$ the integer obtained by rearranging the digits in the decimal notation of $x$ in descending order
- $g_2(x)=$ the integer obtained by rearranging the digits in the decimal notation of $x$ in ascending order
- $f(x)=g_1(x)-g_2(x)$
For example, we have $g_1(314)=431$, $g_2(3021)=123$, $f(271)=721-127=594$. Note that the leading zeros are ignored.
Given integers $N, K$, find $a_K$ in the sequence defined by $a_0=N$, $a_{i+1}=f(a_i)\ (i\geq 0)$.
Constraints
- $0 \leq N \leq 10^9$
- $0 \leq K \leq 10^5$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print $a_K$.
314 2
693
We have:
- $a_0=314$
- $a_1=f(314)=431-134=297$
- $a_2=f(297)=972-279=693$
1000000000 100
0
We have:
- $a_0=1000000000$
- $a_1=f(1000000000)=1000000000-1=999999999$
- $a_2=f(999999999)=999999999-999999999=0$
- $a_3=f(0)=0-0=0$
- $\vdots$
6174 100000
6174