传统题 1000ms 256MiB

B - Polygon

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

B - Polygon

Score : $200$ points

Problem Statement

Determine if an $N$-sided polygon (not necessarily convex) with sides of length $L_1, L_2, ..., L_N$ can be drawn in a two-dimensional plane.

You can use the following theorem:

Theorem: an $N$-sided polygon satisfying the condition can be drawn if and only if the longest side is strictly shorter than the sum of the lengths of the other $N-1$ sides.

Constraints

  • All values in input are integers.
  • $3 \leq N \leq 10$
  • $1 \leq L_i \leq 100$

Input

Input is given from Standard Input in the following format:

NN

L1L_1 L2L_2 ...... LNL_N

Output

If an $N$-sided polygon satisfying the condition can be drawn, print Yes; otherwise, print No.


4
3 8 5 1
Yes

Since $8 < 9 = 3 + 5 + 1$, it follows from the theorem that such a polygon can be drawn on a plane.


4
3 8 4 1
No

Since $8 \geq 8 = 3 + 4 + 1$, it follows from the theorem that such a polygon cannot be drawn on a plane.


10
1 8 10 5 8 12 34 100 11 3
No

2024寒假入门组刷题营(四)

未参加
状态
已结束
规则
ACM/ICPC
题目
7
开始于
2024-2-1 13:30
结束于
2024-2-1 15:30
持续时间
2 小时
主持人
参赛人数
10