#C. C - Calendar Validator

    传统题 1000ms 256MiB

C - Calendar Validator

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

C - Calendar Validator

Score : $300$ points

Problem Statement

There is a $10^{100} \times 7$ matrix $A$, where the $(i,j)$-th entry is $(i-1) \times 7 + j$ for every pair of integers $(i,j)\ (1 \leq i \leq 10^{100}, 1 \leq j \leq 7)$.

Given an $N \times M$ matrix $B$, determine whether $B$ is some (unrotated) rectangular part of $A$.

Constraints

  • $1 \leq N \leq 10^4$
  • $1 \leq M \leq 7$
  • $1 \leq B_{i,j} \leq 10^9$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

B1,1B_{1,1} B1,2B_{1,2} \ldots B1,MB_{1,M}

B2,1B_{2,1} B2,2B_{2,2} \ldots B2,MB_{2,M}

\hspace{1.6cm}\vdots

BN,1B_{N,1} BN,2B_{N,2} \ldots BN,MB_{N,M}

Output

If $B$ is some rectangular part of $A$, print Yes; otherwise, print No.


2 3
1 2 3
8 9 10
Yes

The given matrix $B$ is the top-left $2 \times 3$ submatrix of $A$.


2 1
1
2
No

Although the given matrix $B$ would match the top-left $1 \times 2$ submatrix of $A$ after rotating $90$ degrees, the Problem Statement asks whether $B$ is an unrotated part of $A$, so the answer is No.


10 4
1346 1347 1348 1349
1353 1354 1355 1356
1360 1361 1362 1363
1367 1368 1369 1370
1374 1375 1376 1377
1381 1382 1383 1384
1388 1389 1390 1391
1395 1396 1397 1398
1402 1403 1404 1405
1409 1410 1411 1412
Yes

2025春季ATC码力训练基础营第一次比赛

未参加
状态
已结束
规则
IOI
题目
6
开始于
2025-3-9 18:00
结束于
2025-3-9 19:30
持续时间
1.5 小时
主持人
参赛人数
4