E - Grid Filling
该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。
E - Grid Filling
Score : $500$ points
Problem Statement
You have a grid with $H$ rows from top to bottom and $W$ columns from left to right. We denote by $(i, j)$ the square at the $i$-th row from the top and $j$-th column from the left. $(i,j)\ (1\leq i\leq H,1\leq j\leq W)$ has an integer $A _ {i,j}$ between $1$ and $N$ written on it.
You are given integers $h$ and $w$. For all pairs $(k,l)$ such that $0\leq k\leq H-h$ and $0\leq l\leq W-w$, solve the following problem:
- If you black out the squares $(i,j)$ such that $k\lt i\leq k+h$ and $l\lt j\leq l+w$, how many distinct integers are written on the squares that are not blacked out?
Note, however, that you do not actually black out the squares (that is, the problems are independent).
Constraints
- $1 \leq H,W,N \leq 300$
- $1 \leq h \leq H$
- $1 \leq w \leq W$
- $(h,w)\neq(H,W)$
- $1 \leq A _ {i,j} \leq N\ (1\leq i\leq H,1\leq j\leq W)$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Output
Print the answers in the following format, where $\operatorname{ans}_{k,l}$ denotes the answer to $(k, l)$:
``` $\operatorname{ans} _ {0,0}$ $\operatorname{ans} _ {0,1}$ $\dots$ $\operatorname{ans} _ {0,W-w}$ $\operatorname{ans} _ {1,0}$ $\operatorname{ans} _ {1,1}$ $\dots$ $\operatorname{ans} _ {1,W-w}$ $\vdots$ $\operatorname{ans} _ {H-h,0}$ $\operatorname{ans} _ {H-h,1}$ $\dots$ $\operatorname{ans} _ {H-h,W-w}$ ```3 4 5 2 2
2 2 1 1
3 2 5 3
3 4 4 3
4 4 3
5 3 4
The given grid is as follows:
For example, when $(k,l)=(0,0)$, four distinct integers $1,3,4$, and $5$ are written on the squares that are not blacked out, so $4$ is the answer.
5 6 9 3 4
7 1 5 3 9 5
4 5 4 5 1 2
6 1 6 2 9 7
4 7 1 5 8 8
3 4 3 3 5 3
8 8 7
8 9 7
8 9 8
9 12 30 4 7
2 2 2 2 2 2 2 2 2 2 2 2
2 2 20 20 2 2 5 9 10 9 9 23
2 29 29 29 29 29 28 28 26 26 26 15
2 29 29 29 29 29 25 25 26 26 26 15
2 29 29 29 29 29 25 25 8 25 15 15
2 18 18 18 18 1 27 27 25 25 16 16
2 19 22 1 1 1 7 3 7 7 7 7
2 19 22 22 6 6 21 21 21 7 7 7
2 19 22 22 22 22 21 21 21 24 24 24
21 20 19 20 18 17
20 19 18 19 17 15
21 19 20 19 18 16
21 19 19 18 19 18
20 18 18 18 19 18
18 16 17 18 19 17