传统题 1000ms 256MiB

E - Grid Filling

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

E - Grid Filling

Score : $500$ points

Problem Statement

You have a grid with $H$ rows from top to bottom and $W$ columns from left to right. We denote by $(i, j)$ the square at the $i$-th row from the top and $j$-th column from the left. $(i,j)\ (1\leq i\leq H,1\leq j\leq W)$ has an integer $A _ {i,j}$ between $1$ and $N$ written on it.

You are given integers $h$ and $w$. For all pairs $(k,l)$ such that $0\leq k\leq H-h$ and $0\leq l\leq W-w$, solve the following problem:

  • If you black out the squares $(i,j)$ such that $k\lt i\leq k+h$ and $l\lt j\leq l+w$, how many distinct integers are written on the squares that are not blacked out?

Note, however, that you do not actually black out the squares (that is, the problems are independent).

Constraints

  • $1 \leq H,W,N \leq 300$
  • $1 \leq h \leq H$
  • $1 \leq w \leq W$
  • $(h,w)\neq(H,W)$
  • $1 \leq A _ {i,j} \leq N\ (1\leq i\leq H,1\leq j\leq W)$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

HH WW NN hh ww

A1,1A _ {1,1} A1,2A _ {1,2} \dots A1,WA _ {1,W}

A2,1A _ {2,1} A2,2A _ {2,2} \dots A2,WA _ {2,W}

\vdots

AH,1A _ {H,1} AH,2A _ {H,2} \dots AH,WA _ {H,W}

Output

Print the answers in the following format, where $\operatorname{ans}_{k,l}$ denotes the answer to $(k, l)$:

``` $\operatorname{ans} _ {0,0}$ $\operatorname{ans} _ {0,1}$ $\dots$ $\operatorname{ans} _ {0,W-w}$ $\operatorname{ans} _ {1,0}$ $\operatorname{ans} _ {1,1}$ $\dots$ $\operatorname{ans} _ {1,W-w}$ $\vdots$ $\operatorname{ans} _ {H-h,0}$ $\operatorname{ans} _ {H-h,1}$ $\dots$ $\operatorname{ans} _ {H-h,W-w}$ ```
3 4 5 2 2
2 2 1 1
3 2 5 3
3 4 4 3
4 4 3
5 3 4

The given grid is as follows:

For example, when $(k,l)=(0,0)$, four distinct integers $1,3,4$, and $5$ are written on the squares that are not blacked out, so $4$ is the answer.


5 6 9 3 4
7 1 5 3 9 5
4 5 4 5 1 2
6 1 6 2 9 7
4 7 1 5 8 8
3 4 3 3 5 3
8 8 7
8 9 7
8 9 8

9 12 30 4 7
2 2 2 2 2 2 2 2 2 2 2 2
2 2 20 20 2 2 5 9 10 9 9 23
2 29 29 29 29 29 28 28 26 26 26 15
2 29 29 29 29 29 25 25 26 26 26 15
2 29 29 29 29 29 25 25 8 25 15 15
2 18 18 18 18 1 27 27 25 25 16 16
2 19 22 1 1 1 7 3 7 7 7 7
2 19 22 22 6 6 21 21 21 7 7 7
2 19 22 22 22 22 21 21 21 24 24 24
21 20 19 20 18 17
20 19 18 19 17 15
21 19 20 19 18 16
21 19 19 18 19 18
20 18 18 18 19 18
18 16 17 18 19 17

2024暑假入门组刷题营第三期(九)

未参加
状态
已结束
规则
IOI
题目
8
开始于
2024-7-17 13:00
结束于
2024-7-17 15:00
持续时间
2 小时
主持人
参赛人数
8