#F. D - Semi Common Multiple

    传统题 1000ms 256MiB

D - Semi Common Multiple

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

D - Semi Common Multiple

Score : $400$ points

Problem Statement

Given are a sequence $A= {a_1,a_2,......a_N}$ of $N$ positive even numbers, and an integer $M$.

Let a semi-common multiple of $A$ be a positive integer $X$ that satisfies the following condition for every $k$ $(1 \leq k \leq N)$:

  • There exists a non-negative integer $p$ such that $X= a_k \times (p+0.5)$.

Find the number of semi-common multiples of $A$ among the integers between $1$ and $M$ (inclusive).

Constraints

  • $1 \leq N \leq 10^5$
  • $1 \leq M \leq 10^9$
  • $2 \leq a_i \leq 10^9$
  • $a_i$ is an even number.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

a1a_1 a2a_2 ...... aNa_N

Output

Print the number of semi-common multiples of $A$ among the integers between $1$ and $M$ (inclusive).


2 50
6 10
2
  • $15 = 6 \times 2.5 $
  • $15 = 10 \times 1.5 $
  • $45 = 6 \times 7.5 $
  • $45 = 10 \times 4.5 $

Thus, $15$ and $45$ are semi-common multiples of $A$. There are no other semi-common multiples of $A$ between $1$ and $50$, so the answer is $2$.


3 100
14 22 40
0

The answer can be $0$.


5 1000000000
6 6 2 6 2
166666667

2024暑假入门组刷题营第三期(八)

未参加
状态
已结束
规则
IOI
题目
8
开始于
2024-7-16 13:00
结束于
2024-7-16 15:00
持续时间
2 小时
主持人
参赛人数
10