#AT2609. E - Best Performances
E - Best Performances
当前没有测试数据。
E - Best Performances
Score : $475$ points
Problem Statement
We have a sequence $A=(A_1,A_2,\dots,A_N)$ of length $N$. Initially, all the terms are $0$.
Using an integer $K$ given in the input, we define a function $f(A)$ as follows:
- Let $B$ be the sequence obtained by sorting $A$ in descending order (so that it becomes monotonically non-increasing).
- Then, let $f(A)=B_1 + B_2 + \dots + B_K$.
We consider applying $Q$ updates on this sequence.
Apply the following operation on the sequence $A$ for $i=1,2,\dots,Q$ in this order, and print the value $f(A)$ at that point after each update.
- Change $A_{X_i}$ to $Y_i$.
Constraints
- All input values are integers.
- $1 \le K \le N \le 5 \times 10^5$
- $1 \le Q \le 5 \times 10^5$
- $1 \le X_i \le N$
- $0 \le Y_i \le 10^9$
Input
The input is given from Standard Input in the following format:
Output
Print $Q$ lines in total. The $i$-th line should contain the value $f(A)$ as an integer when the $i$-th update has ended.
4 2 10
1 5
2 1
3 3
4 2
2 10
1 0
4 0
3 1
2 0
3 0
5
6
8
8
15
13
13
11
1
0
In this input, $N=4$ and $K=2$. $Q=10$ updates are applied.
- The $1$-st update makes $A=(5, 0,0,0)$. Now, $f(A)=5$.
- The $2$-nd update makes $A=(5, 1,0,0)$. Now, $f(A)=6$.
- The $3$-rd update makes $A=(5, 1,3,0)$. Now, $f(A)=8$.
- The $4$-th update makes $A=(5, 1,3,2)$. Now, $f(A)=8$.
- The $5$-th update makes $A=(5,10,3,2)$. Now, $f(A)=15$.
- The $6$-th update makes $A=(0,10,3,2)$. Now, $f(A)=13$.
- The $7$-th update makes $A=(0,10,3,0)$. Now, $f(A)=13$.
- The $8$-th update makes $A=(0,10,1,0)$. Now, $f(A)=11$.
- The $9$-th update makes $A=(0, 0,1,0)$. Now, $f(A)=1$.
- The $10$-th update makes $A=(0, 0,0,0)$. Now, $f(A)=0$.