#AT2495. C - Four Variables

C - Four Variables

当前没有测试数据。

C - Four Variables

Score : $300$ points

Problem Statement

You are given a positive integer $N$.
Find the number of quadruples of positive integers $(A,B,C,D)$ such that $AB + CD = N$.

Under the constraints of this problem, it can be proved that the answer is at most $9 \times 10^{18}$.

Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $N$ is an integer.

Input

The input is given from Standard Input in the following format:

NN

Output

Print the answer.


4
8

Here are the eight desired quadruples.

  • $(A,B,C,D)=(1,1,1,3)$
  • $(A,B,C,D)=(1,1,3,1)$
  • $(A,B,C,D)=(1,2,1,2)$
  • $(A,B,C,D)=(1,2,2,1)$
  • $(A,B,C,D)=(1,3,1,1)$
  • $(A,B,C,D)=(2,1,1,2)$
  • $(A,B,C,D)=(2,1,2,1)$
  • $(A,B,C,D)=(3,1,1,1)$

292
10886

19876
2219958