#AT2495. C - Four Variables
C - Four Variables
当前没有测试数据。
C - Four Variables
Score : $300$ points
Problem Statement
You are given a positive integer $N$.
Find the number of quadruples of positive integers $(A,B,C,D)$ such that $AB + CD = N$.
Under the constraints of this problem, it can be proved that the answer is at most $9 \times 10^{18}$.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $N$ is an integer.
Input
The input is given from Standard Input in the following format:
Output
Print the answer.
4
8
Here are the eight desired quadruples.
- $(A,B,C,D)=(1,1,1,3)$
- $(A,B,C,D)=(1,1,3,1)$
- $(A,B,C,D)=(1,2,1,2)$
- $(A,B,C,D)=(1,2,2,1)$
- $(A,B,C,D)=(1,3,1,1)$
- $(A,B,C,D)=(2,1,1,2)$
- $(A,B,C,D)=(2,1,2,1)$
- $(A,B,C,D)=(3,1,1,1)$
292
10886
19876
2219958