#AT2461. A - Many A+B Problems

A - Many A+B Problems

当前没有测试数据。

A - Many A+B Problems

Score : $100$ points

Problem Statement

You are given $N$ pairs of integers: $(A_1, B_1), (A_2, B_2), \ldots, (A_N, B_N)$. For each $i = 1, 2, \ldots, N$, print $A_i + B_i$.

Constraints

  • $1 \leq N \leq 1000$
  • $-10^9 \leq A_i, B_i \leq 10^9$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN

A1A_1 B1B_1

A2A_2 B2B_2

\vdots

ANA_N BNB_N

Output

Print $N$ lines. For $i = 1, 2, \ldots, N$, the $i$-th line should contain $A_i+B_i$.


4
3 5
2 -6
-5 0
314159265 123456789
8
-4
-5
437616054
  • The first line should contain $A_1 + B_1 = 3 + 5 = 8$.
  • The second line should contain $A_2 + B_2 = 2 + (-6) = -4$.
  • The third line should contain $A_3 + B_3 = (-5) + 0 = -5$.
  • The fourth line should contain $A_4 + B_4 = 314159265 + 123456789 = 437616054$.