#AT2426. F - Permutation Distance

F - Permutation Distance

当前没有测试数据。

F - Permutation Distance

Score : $500$ points

Problem Statement

You are given a permutation $P=(P _ 1,P _ 2,\ldots,P _ N)$ of $(1,2,\ldots,N)$.

Find the following value for all $i\ (1\leq i\leq N)$:

  • $D _ i=\displaystyle\min_{j\neq i}\left\lparen\left\lvert P _ i-P _ j\right\rvert+\left\lvert i-j\right\rvert\right\rparen$.
What is a permutation?

A permutation of (1,2,,N)(1,2,\ldots,N) is a sequence that is obtained by rearranging (1,2,,N)(1,2,\ldots,N). In other words, a sequence AA of length NN is a permutation of (1,2,,N)(1,2,\ldots,N) if and only if each i (1iN)i\ (1\leq i\leq N) occurs in AA exactly once.

Constraints

  • $2 \leq N \leq 2\times10^5$
  • $1 \leq P _ i \leq N\ (1\leq i\leq N)$
  • $i\neq j\implies P _ i\neq P _ j$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN

P1P _ 1 P2P _ 2 \ldots PNP _ N

Output

Print $D _ i\ (1\leq i\leq N)$ in ascending order of $i$, separated by spaces.


4
3 2 4 1
2 2 3 3 

For example, for $i=1$,

  • if $j=2$, we have $\left\lvert P _ i-P _ j\right\rvert=1$ and $\left\lvert i-j\right\rvert=1$;
  • if $j=3$, we have $\left\lvert P _ i-P _ j\right\rvert=1$ and $\left\lvert i-j\right\rvert=2$;
  • if $j=4$, we have $\left\lvert P _ i-P _ j\right\rvert=2$ and $\left\lvert i-j\right\rvert=3$.

Thus, the value is minimum when $j=2$, where $\left\lvert P _ i-P _ j\right\rvert+\left\lvert i-j\right\rvert=2$, so $D _ 1=2$.


7
1 2 3 4 5 6 7
2 2 2 2 2 2 2 

16
12 10 7 14 8 3 11 13 2 5 6 16 4 1 15 9
3 3 3 5 3 4 3 3 4 2 2 4 4 4 4 7