#AT2422. B - First Query Problem
B - First Query Problem
当前没有测试数据。
B - First Query Problem
Score : $200$ points
Problem Statement
You are given an integer $N$ and a sequence $A=(A _ 1,A _ 2,\ldots,A _ N)$ of length $N$.
Given $Q$ queries, process them in the given order. Each query is of one of the following two kinds:
1 k x
: set the value $A _ k$ to $x$.2 k
: print the value $A _ k$.
Constraints
- $1 \leq N \leq 10 ^ 5$
- $1 \leq Q \leq 10 ^ 5$
- $0 \leq A _ i \leq 10 ^ 9\ (1\leq i\leq N)$
- $1\leq k\leq N$ for all queries.
- $0\leq x\leq 10 ^ 9$ for all queries of the first kind.
- There is at least one query of the second kind.
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Here, $\operatorname{query} _ i$ denotes the $i$-th query, given in one of the following formats:
``` $1$ $k$ $x$ ``` ``` $2$ $k$ ```Output
Print $q$ lines, where $q$ is the number of queries of the second kind. The $j$-th $(1\leq j\leq q)$ line should contain the response to the $j$-th such query.
3
1 3 5
7
2 2
2 3
1 3 0
2 3
1 2 8
2 2
2 1
3
5
0
8
1
Initially, $A=(1,3,5)$.
- For the $1$-st query, $A=(1,3,5)$, where $A _ 2=3$, so $3$ should be printed.
- For the $2$-nd query, $A=(1,3,5)$, where $A _ 3=5$, so $5$ should be printed.
- The $3$-rd query sets the value $A _ 3$ to $0$, making $A=(1,3,0)$.
- For the $4$-th query, $A=(1,3,0)$, where $A _ 3=0$, so $0$ should be printed.
- The $5$-th query sets the value $A _ 2$ to $8$, making $A=(1,8,0)$.
- For the $6$-th query, $A=(1,8,0)$, where $A _ 2=8$, so $8$ should be printed.
- For the $7$-th query, $A=(1,8,0)$, where $A _ 1=1$, so $1$ should be printed.
5
22 2 16 7 30
10
1 4 0
1 5 0
2 2
2 3
2 4
2 5
1 4 100
1 5 100
2 3
2 4
2
16
0
0
16
100
7
478 369 466 343 541 42 165
20
2 1
1 7 729
1 6 61
1 6 838
1 3 319
1 4 317
2 4
1 1 673
1 3 176
1 5 250
1 1 468
2 6
1 7 478
1 5 595
2 6
1 6 599
1 6 505
2 3
2 5
2 1
478
317
838
838
176
595
468