#AT2417. E - Choose Two and Eat One
E - Choose Two and Eat One
当前没有测试数据。
E - Choose Two and Eat One
Score : $500$ points
Problem Statement
A box contains $N$ balls, each with an integer between $1$ and $M-1$ written on it. For $i = 1, 2, \ldots, N$, the integer written on the $i$-th ball is $A_i$.
While the box has two or more balls remaining, Takahashi will repeat the following.
- First, choose two balls arbitrarily.
- Then, get a score equal to the remainder when $x^y + y^x$ is divided by $M$, where $x$ and $y$ are the integers written on the two balls.
- Finally, choose one of the two balls arbitrarily, eat it, and return the other to the box.
Print the maximum possible total score Takahashi will get.
Constraints
- $2 \leq N \leq 500$
- $2 \leq M \leq 10^9$
- $1 \leq A_i \leq M-1$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Output
Print the answer.
4 10
4 2 3 2
20
Consider the following scenario. Below, $X \bmod Y$ denotes the remainder when a non-negative integer $X$ is divided by a positive integer $Y$.
- Take the first and third balls from the box to score $(4^3 + 3^4) \bmod 10 = 5$ points. Then, eat the first ball and return the third to the box. Now, the box has the second, third, and fourth balls.
- Take the third and fourth balls from the box to score $(3^2 + 2^3) \bmod 10 = 7$ points. Then, eat the third ball and return the fourth to the box. Now, the box has the second and fourth balls.
- Take the second and fourth balls from the box to score $(2^2 + 2^2) \bmod 10 = 8$ points. Then, eat the second ball and return the fourth to the box. Now, the box has just the fourth ball.
Here, Takahashi scores a total of $5 + 7 + 8 = 20$ points, which is the maximum possible value.
20 100
29 31 68 20 83 66 23 84 69 96 41 61 83 37 52 71 18 55 40 8
1733