#AT2384. D - All Assign Point Add
D - All Assign Point Add
D - All Assign Point Add
Score : $400$ points
Problem Statement
You are given a sequence $A = (A_1, A_2, \dots, A_N)$ of length $N$.
Given $Q$ queries, process all of them in order. The $q$-th $(1\leq q\leq Q)$ query is in one of the following three formats, which represents the following queries:
- $1\ x _ q$: assign $x_q$ to every element of $A$.
- $2\ i _ q\ x _ q$: add $x_q$ to $A _ {i _ q}$.
- $3\ i _ q$: print the value of $A _ {i _ q}$.
Constraints
- $1 \leq N \leq 2\times10^5$
- $1 \leq Q \leq 2\times10^5$
- $0 \leq A _ i \leq 10^9\ (1\leq i\leq N)$
- If the $q$-th $(1\leq q\leq Q)$ query is in the second or third format, $1 \leq i _ q \leq N$.
- If the $q$-th $(1\leq q\leq Q)$ query is in the first or second format, $0 \leq x _ q \leq 10^9$.
- There exists a query in the third format.
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Here, $\operatorname{query}_q$ denotes the $q$-th query, which is in one of following formats: 1 x
, 2 i x
, and 3 i
.
Output
Print $X$ lines, where $X$ is the number of $q$'s $(1\leq q\leq Q)$ such that $\operatorname{query}_q$ is in the third format. The $j$-th $(1\leq j\leq X)$ line should contain the answer to the $j$-th such query.
5
3 1 4 1 5
6
3 2
2 3 4
3 3
1 1
2 3 4
3 3
1
8
5
Initially, $A=(3,1,4,1,5)$. The queries are processed as follows:
- $A_2=1$, so print $1$.
- Add $4$ to $A_3$, making $A=(3,1,8,1,5)$.
- $A_3=8$, so print $8$.
- Assign $1$ to every element of $A$, making $A=(1,1,1,1,1)$.
- Add $4$ to $A_3$, making $A=(1,1,5,1,1)$.
- $A_3=5$, so print $5$.
1
1000000000
8
2 1 1000000000
2 1 1000000000
2 1 1000000000
2 1 1000000000
2 1 1000000000
2 1 1000000000
2 1 1000000000
3 1
8000000000
Note that the elements of $A$ may not fit into a $32$-bit integer type.
10
1 8 4 15 7 5 7 5 8 0
20
2 7 0
3 7
3 8
1 7
3 3
2 4 4
2 4 9
2 10 5
1 10
2 4 2
1 10
2 3 1
2 8 11
2 3 14
2 1 9
3 8
3 8
3 1
2 6 5
3 7
7
5
7
21
21
19
10
相关
在下列比赛中: