#AT2371. G - Count Sequences

G - Count Sequences

当前没有测试数据。

G - Count Sequences

Score : $600$ points

Problem Statement

Find the number of sequences of integers with $N$ terms, $A=(a_1,a_2,\ldots,a_N)$, that satisfy the following conditions, modulo $998244353$.

  • $0 \leq a_1 \leq a_2 \leq \ldots \leq a_N \leq M$.
  • For each $i=1,2,\ldots,N-1$, the remainder when $a_i$ is divided by $3$ is different from the remainder when $a_{i+1}$ is divided by $3$.

Constraints

  • $2 \leq N \leq 10^7$
  • $1 \leq M \leq 10^7$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN MM

Output

Print the answer.


3 4
8

Here are the eight sequences that satisfy the conditions.

  • $(0,1,2)$
  • $(0,1,3)$
  • $(0,2,3)$
  • $(0,2,4)$
  • $(1,2,3)$
  • $(1,2,4)$
  • $(1,3,4)$
  • $(2,3,4)$

276 10000000
909213205

Be sure to find the count modulo $998244353$.