#AT2360. D - Yet Another Recursive Function
D - Yet Another Recursive Function
当前没有测试数据。
D - Yet Another Recursive Function
Score : $400$ points
Problem Statement
A function $f(x)$ defined for non-negative integers $x$ satisfies the following conditions.
- $f(0) = 1$.
- $f(k) = f(\lfloor \frac{k}{2}\rfloor) + f(\lfloor \frac{k}{3}\rfloor)$ for any positive integer $k$.
Here, $\lfloor A \rfloor$ denotes the value of $A$ rounded down to an integer.
Find $f(N)$.
Constraints
- $N$ is an integer satisfying $0 \le N \le 10^{18}$.
Input
The input is given from Standard Input in the following format:
Output
Print the answer.
2
3
We have $f(2) = f(\lfloor \frac{2}{2}\rfloor) + f(\lfloor \frac{2}{3}\rfloor) = f(1) + f(0) =(f(\lfloor \frac{1}{2}\rfloor) + f(\lfloor \frac{1}{3}\rfloor)) + f(0) =(f(0)+f(0)) + f(0)= 3$.
0
1
100
55