#AT2356. Ex - XOR Sum of Arrays
Ex - XOR Sum of Arrays
当前没有测试数据。
Ex - XOR Sum of Arrays
Score : $600$ points
Problem Statement
For sequences $B=(B_1,B_2,\dots,B_M)$ and $C=(C_1,C_2,\dots,C_M)$, each of length $M$, consisting of non-negative integers, let the XOR sum $S(B,C)$ of $B$ and $C$ be defined as the sequence $(B_1\oplus C_1, B_2\oplus C_2, ..., B_{M}\oplus C_{M})$ of length $M$ consisting of non-negative integers. Here, $\oplus$ represents bitwise XOR.
For instance, if $B = (1, 2, 3)$ and $C = (3, 5, 7)$, we have $S(B, C) = (1\oplus 3, 2\oplus 5, 3\oplus 7) = (2, 7, 4)$.
You are given a sequence $A = (A_1, A_2, \dots, A_N)$ of non-negative integers. Let $A(i, j)$ denote the contiguous subsequence composed of the $i$-th through $j$-th elements of $A$.
You will be given $Q$ queries explained below and asked to process all of them.
Each query gives you integers $a$, $b$, $c$, $d$, $e$, and $f$, each between $1$ and $N$, inclusive. These integers satisfy $a \leq b$, $c \leq d$, $e \leq f$, and $b-a=d-c$. If $S(A(a, b), A(c, d))$ is strictly lexicographically smaller than $A(e, f)$, print Yes
; otherwise, print No
.
What is bitwise XOR?
The exclusive logical sum $a \oplus b$ of two integers $a$ and $b$ is defined as follows.- The $2^k$'s place ($k \geq 0$) in the binary notation of $a \oplus b$ is $1$ if exactly one of the $2^k$'s places in the binary notation of $a$ and $b$ is $1$; otherwise, it is $0$.
What is lexicographical order on sequences?
A sequence $A = (A_1, \ldots, A_{|A|})$ is said to be strictly lexicographically smaller than a sequence $B = (B_1, \ldots, B_{|B|})$ if and only if 1. or 2. below is satisfied.
- $|A|<|B|$ and $(A_{1},\ldots,A_{|A|}) = (B_1,\ldots,B_{|A|})$.
- There is an integer $1\leq i\leq \min\{|A|,|B|\}$ that satisfies both of the following.
- $(A_{1},\ldots,A_{i-1}) = (B_1,\ldots,B_{i-1})$.
- $A_i < B_i$.
Constraints
- $1 \leq N \leq 5 \times 10^5$
- $0 \leq A_i \leq 10^{18}$
- $1 \leq Q \leq 5 \times 10^4$
- $1 \leq a \leq b \leq N$
- $1 \leq c \leq d \leq N$
- $1 \leq e \leq f \leq N$
- $b - a = d - c$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format, where $\text{query}_i$ represents the $i$-th query:
The queries are in the following format:
``` $a$ $b$ $c$ $d$ $e$ $f$ ```Output
Print $Q$ lines. The $i$-th line should contain the answer to the $i$-th query.
4 5
1 2 3 1
1 3 2 4 1 4
1 2 2 3 3 4
1 1 2 2 3 4
1 2 2 3 3 3
1 4 1 4 1 1
No
No
Yes
No
Yes
For the first query, we have $A(1, 3) = (1, 2, 3)$ and $A(2, 4) = (2, 3, 1)$, so $S(A(1,3),A(2,4)) = (1 \oplus 2, 2 \oplus 3, 3 \oplus 1) = (3, 1, 2)$. This is lexicographcially larger than $A(1, 4) = (1, 2, 3, 1)$, so the answer is No
.
For the second query, we have $S(A(1,2),A(2,3)) = (3, 1)$ and $A(3,4) = (3, 1)$, which are equal, so the answer is No
.
10 10
725560240 9175925348 9627229768 7408031479 623321125 4845892509 8712345300 1026746010 4844359340 2169008582
5 6 5 6 2 6
5 6 1 2 1 1
3 8 3 8 1 6
5 10 1 6 1 7
3 4 1 2 5 5
7 10 4 7 2 3
3 6 1 4 7 9
4 5 3 4 8 9
2 6 1 5 5 8
4 8 1 5 1 9
Yes
Yes
Yes
Yes
No
No
No
No
No
No