#AT2310. B - Rectangle Detection
B - Rectangle Detection
当前没有测试数据。
B - Rectangle Detection
Score : $200$ points
Problem Statement
Takahashi generated $10$ strings $S_1,S_2,\dots,S_{10}$ as follows.
- First, let $S_i (1 \le i \le 10)=$
..........
($10$.
s in a row). - Next, choose four integers $A$, $B$, $C$, and $D$ satisfying all of the following.
- $1 \le A \le B \le 10$.
- $1 \le C \le D \le 10$.
- Then, for every pair of integers $(i,j)$ satisfying all of the following, replace the $j$-th character of $S_i$ with
#
.- $A \le i \le B$.
- $C \le j \le D$.
You are given $S_1,S_2,\dots,S_{10}$ generated as above. Find the integers $A$, $B$, $C$, and $D$ Takahashi chose.
It can be proved that such integers $A$, $B$, $C$, and $D$ uniquely exist (there is just one answer) under the Constraints.
Constraints
- $S_1,S_2,\dots,S_{10}$ are strings, each of length $10$, that can be generated according to the Problem Statement.
Input
The input is given from Standard Input in the following format:
Output
Print the answer in the following format:
``` $A$ $B$ $C$ $D$ ```..........
..........
..........
..........
...######.
...######.
...######.
...######.
..........
..........
5 8
4 9
Here, Takahashi chose $A=5$, $B=8$, $C=4$, $D=9$.
This choice generates $10$ strings $S_1,S_2,\dots,S_{10}$, each of length $10$, where the $4$-th through $9$-th characters of $S_5,S_6,S_7,S_8$ are #
, and the other characters are .
.
These are equal to the strings given in the input.
..........
..#.......
..........
..........
..........
..........
..........
..........
..........
..........
2 2
3 3
##########
##########
##########
##########
##########
##########
##########
##########
##########
##########
1 10
1 10