#AT2310. B - Rectangle Detection

B - Rectangle Detection

当前没有测试数据。

B - Rectangle Detection

Score : $200$ points

Problem Statement

Takahashi generated $10$ strings $S_1,S_2,\dots,S_{10}$ as follows.

  • First, let $S_i (1 \le i \le 10)=$ .......... ($10$ .s in a row).
  • Next, choose four integers $A$, $B$, $C$, and $D$ satisfying all of the following.
    • $1 \le A \le B \le 10$.
    • $1 \le C \le D \le 10$.
  • Then, for every pair of integers $(i,j)$ satisfying all of the following, replace the $j$-th character of $S_i$ with #.
    • $A \le i \le B$.
    • $C \le j \le D$.

You are given $S_1,S_2,\dots,S_{10}$ generated as above. Find the integers $A$, $B$, $C$, and $D$ Takahashi chose.
It can be proved that such integers $A$, $B$, $C$, and $D$ uniquely exist (there is just one answer) under the Constraints.

Constraints

  • $S_1,S_2,\dots,S_{10}$ are strings, each of length $10$, that can be generated according to the Problem Statement.

Input

The input is given from Standard Input in the following format:

S1S_1

S2S_2

\vdots

S10S_{10}

Output

Print the answer in the following format:

``` $A$ $B$ $C$ $D$ ```
..........
..........
..........
..........
...######.
...######.
...######.
...######.
..........
..........
5 8
4 9

Here, Takahashi chose $A=5$, $B=8$, $C=4$, $D=9$.
This choice generates $10$ strings $S_1,S_2,\dots,S_{10}$, each of length $10$, where the $4$-th through $9$-th characters of $S_5,S_6,S_7,S_8$ are #, and the other characters are ..
These are equal to the strings given in the input.


..........
..#.......
..........
..........
..........
..........
..........
..........
..........
..........
2 2
3 3

##########
##########
##########
##########
##########
##########
##########
##########
##########
##########
1 10
1 10