#AT2298. F - Exactly K Steps
F - Exactly K Steps
当前没有测试数据。
F - Exactly K Steps
Score : $500$ points
Problem Statement
You are given a tree with $N$ vertices. The vertices are numbered $1, \dots, N$, and the $i$-th ($1 \leq i \leq N - 1$) edge connects Vertices $A_i$ and $B_i$.
We define the distance between Vertices $u$ and $v$ on this tree by the number of edges in the shortest path from Vertex $u$ to Vertex $v$.
You are given $Q$ queries. In the $i$-th ($1 \leq i \leq Q$) query, given integers $U_i$ and $K_i$, print the index of any vertex whose distance from Vertex $U_i$ is exactly $K_i$. If there is no such vertex, print -1
.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $1 \leq A_i \lt B_i \leq N \, (1 \leq i \leq N - 1)$
- The given graph is a tree.
- $1 \leq Q \leq 2 \times 10^5$
- $1 \leq U_i, K_i \leq N \, (1 \leq i \leq Q)$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print $Q$ lines. The $i$-th ($1 \leq i \leq Q$) line should contain the index of any vertex whose distance from Vertex $U_i$ is exactly $K_i$ if such a vertex exists; if not, it should contain -1
. If there are multiple such vertices, you may print any of them.
5
1 2
2 3
3 4
3 5
3
2 2
5 3
3 3
4
1
-1
- Two vertices, Vertices $4$ and $5$, have a distance exactly $2$ from Vertex $2$.
- Only Vertex $1$ has a distance exactly $3$ from Vertex $5$.
- No vertex has a distance exactly $3$ from Vertex $3$.
10
1 2
2 3
3 5
2 8
3 4
4 6
4 9
5 7
9 10
5
1 1
2 2
3 3
4 4
5 5
2
4
10
-1
-1