#AT2298. F - Exactly K Steps

F - Exactly K Steps

当前没有测试数据。

F - Exactly K Steps

Score : $500$ points

Problem Statement

You are given a tree with $N$ vertices. The vertices are numbered $1, \dots, N$, and the $i$-th ($1 \leq i \leq N - 1$) edge connects Vertices $A_i$ and $B_i$.

We define the distance between Vertices $u$ and $v$ on this tree by the number of edges in the shortest path from Vertex $u$ to Vertex $v$.

You are given $Q$ queries. In the $i$-th ($1 \leq i \leq Q$) query, given integers $U_i$ and $K_i$, print the index of any vertex whose distance from Vertex $U_i$ is exactly $K_i$. If there is no such vertex, print -1.

Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i \lt B_i \leq N \, (1 \leq i \leq N - 1)$
  • The given graph is a tree.
  • $1 \leq Q \leq 2 \times 10^5$
  • $1 \leq U_i, K_i \leq N \, (1 \leq i \leq Q)$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

A1A_1 B1B_1

\vdots

AN1A_{N-1} BN1B_{N-1}

QQ

U1U_1 K1K_1

\vdots

UQU_Q KQK_Q

Output

Print $Q$ lines. The $i$-th ($1 \leq i \leq Q$) line should contain the index of any vertex whose distance from Vertex $U_i$ is exactly $K_i$ if such a vertex exists; if not, it should contain -1. If there are multiple such vertices, you may print any of them.


5
1 2
2 3
3 4
3 5
3
2 2
5 3
3 3
4
1
-1
  • Two vertices, Vertices $4$ and $5$, have a distance exactly $2$ from Vertex $2$.
  • Only Vertex $1$ has a distance exactly $3$ from Vertex $5$.
  • No vertex has a distance exactly $3$ from Vertex $3$.

10
1 2
2 3
3 5
2 8
3 4
4 6
4 9
5 7
9 10
5
1 1
2 2
3 3
4 4
5 5
2
4
10
-1
-1