#AT2291. G - Yet Another RGB Sequence

G - Yet Another RGB Sequence

G - Yet Another RGB Sequence

Score : $600$ points

Problem Statement

You are given integers $R$, $G$, $B$, and $K$. How many strings $S$ consisting of R, G, and B satisfy all of the conditions below? Find the count modulo $998244353$.

  • The number of occurrences of R, G, and B in $S$ are $R$, $G$, and $B$, respectively.
  • The number of occurrences of RG as (contiguous) substrings in $S$ is $K$.

Constraints

  • $1 \leq R,G,B\leq 10^6$
  • $0 \leq K \leq \mathrm{min}(R,G)$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

RR GG BB KK

Output

Print the answer.


2 1 1 1
6

The following six strings satisfy the conditions.

  • RRGB
  • RGRB
  • RGBR
  • RBRG
  • BRRG
  • BRGR

1000000 1000000 1000000 1000000
80957240

Find the count modulo $998244353$.