#AT2279. C - Belt Conveyor
C - Belt Conveyor
当前没有测试数据。
C - Belt Conveyor
Score : $300$ points
Problem Statement
We have a grid with $H$ horizontal rows and $W$ vertical columns. $(i, j)$ denotes the square at the $i$-th row from the top and $j$-th column from the left.
$(i,j)$ has a character $G_{i,j}$ written on it. $G_{i,j}$ is U
, D
, L
, or R
.
You are initially at $(1,1)$. You repeat the following operation until you cannot make a move.
Let $(i,j)$ be the square you are currently at.
If $G_{i,j}$ isU
and $i \neq 1$, move to $(i-1,j)$.
If $G_{i,j}$ isD
and $i \neq H$, move to $(i+1,j)$.
If $G_{i,j}$ isL
and $j \neq 1$, move to $(i,j-1)$.
If $G_{i,j}$ isR
and $j \neq W$, move to $(i,j+1)$.
Otherwise, you cannot make a move.
Print the square you end up at when you cannot make a move.
If you indefinitely repeat moving, print -1
instead.
Constraints
- $1 \leq H, W \leq 500$
- $G_{i,j}$ is
U
,D
,L
, orR
. - $H$ and $W$ are integers.
Input
Input is given from Standard Input in the following format:
Output
If you end up at $(i, j)$, print it in the following format:
``` $i$ $j$ ```If you indefinitely repeat moving, print -1
.
2 3
RDU
LRU
1 3
You will move as $(1, 1) \to (1, 2) \to (2, 2) \to (2, 3) \to (1, 3)$, ending up here, so the answer is $(1, 3)$.
2 3
RRD
ULL
-1
You will indefinitely repeat moving as $(1, 1) \to (1, 2) \to (1, 3) \to (2, 3) \to (2, 2) \to (2, 1) \to (1, 1) \to (1, 2) \to \dots$, so -1
should be printed in this case.
9 44
RRDDDDRRRDDDRRRRRRDDDRDDDDRDDRDDDDDDRRDRRRRR
RRRDLRDRDLLLLRDRRLLLDDRDLLLRDDDLLLDRRLLLLLDD
DRDLRLDRDLRDRLDRLRDDLDDLRDRLDRLDDRLRRLRRRDRR
DDLRRDLDDLDDRLDDLDRDDRDDDDRLRRLRDDRRRLDRDRDD
RDLRRDLRDLLLLRRDLRDRRDRRRDLRDDLLLLDDDLLLLRDR
RDLLLLLRDLRDRLDDLDDRDRRDRLDRRRLDDDLDDDRDDLDR
RDLRRDLDDLRDRLRDLDDDLDDRLDRDRDLDRDLDDLRRDLRR
RDLDRRLDRLLLLDRDRLLLRDDLLLLLRDRLLLRRRRLLLDDR
RRRRDRDDRRRDDRDDDRRRDRDRDRDRRRRRRDDDRDDDDRRR
9 5