#AT2267. G - Erasing Prime Pairs
G - Erasing Prime Pairs
当前没有测试数据。
G - Erasing Prime Pairs
Score : $600$ points
Problem Statement
There are integers with $N$ different values written on a blackboard. The $i$-th value is $A_i$ and is written $B_i$ times.
You may repeat the following operation as many times as possible:
- Choose two integers $x$ and $y$ written on the blackboard such that $x+y$ is prime. Erase these two integers.
Find the maximum number of times the operation can be performed.
Constraints
- $1 \leq N \leq 100$
- $1 \leq A_i \leq 10^7$
- $1 \leq B_i \leq 10^9$
- All $A_i$ are distinct.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
3
3 3
2 4
6 2
3
We have $2 + 3 = 5$, and $5$ is prime, so you can choose $2$ and $3$ to erase them, but nothing else. Since there are four $2$s and three $3$s, you can do the operation three times.
1
1 4
2
We have $1 + 1 = 2$, and $2$ is prime, so you can choose $1$ and $1$ to erase them. Since there are four $1$s, you can do the operation twice.