#AT2260. Ex - Max Limited Sequence
Ex - Max Limited Sequence
当前没有测试数据。
Ex - Max Limited Sequence
Score : $600$ points
Problem Statement
Find the number, modulo $998244353$, of integer sequences $A = (A_1, \dots, A_N)$ of length $N$ that satisfy all of the following conditions:
- $0 \leq A_i \leq M$ for all $i$ such that $1 \leq i \leq N$.
- The maximum value of $A_{L_j}, \dots, A_{R_j}$ is $X_j$ for all $j$ such that $1 \leq j \leq Q$.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq M \lt 998244353$
- $1 \leq Q \leq 2 \times 10^5$
- $1 \leq L_i \leq R_i \leq N \, (1 \leq i \leq Q)$
- $1 \leq X_i \leq M \, (1 \leq i \leq Q)$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
3 3 2
1 2 2
2 3 3
5
$A = (0, 2, 3), (1, 2, 3), (2, 0, 3), (2, 1, 3), (2, 2, 3)$ satisfy the conditions.
1 1 1
1 1 1
1
6 40000000 3
1 4 30000000
2 6 20000000
3 5 10000000
135282163