#AT2241. E - At Least One
E - At Least One
当前没有测试数据。
E - At Least One
Score : $500$ points
Problem Statement
You are given an integer $M$ and $N$ pairs of integers $(A_1, B_1), (A_2, B_2), \dots, (A_N, B_N)$.
For all $i$, it holds that $1 \leq A_i \lt B_i \leq M$.
A sequence $S$ is said to be a good sequence if the following conditions are satisfied:
- $S$ is a contiguous subsequence of the sequence $(1,2,3,..., M)$.
- For all $i$, $S$ contains at least one of $A_i$ and $B_i$.
Let $f(k)$ be the number of possible good sequences of length $k$.
Enumerate $f(1), f(2), \dots, f(M)$.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $2 \leq M \leq 2 \times 10^5$
- $1 \leq A_i \lt B_i \leq M$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answers in the following format:
``` $f(1)$ $f(2)$ $\dots$ $f(M)$ ```3 5
1 3
1 4
2 5
0 1 3 2 1
Here is the list of all possible good sequences.
- $(1,2)$
- $(1,2,3)$
- $(2,3,4)$
- $(3,4,5)$
- $(1,2,3,4)$
- $(2,3,4,5)$
- $(1,2,3,4,5)$
1 2
1 2
2 1
5 9
1 5
1 7
5 6
5 8
2 6
0 0 1 2 4 4 3 2 1