#AT2241. E - At Least One

E - At Least One

当前没有测试数据。

E - At Least One

Score : $500$ points

Problem Statement

You are given an integer $M$ and $N$ pairs of integers $(A_1, B_1), (A_2, B_2), \dots, (A_N, B_N)$.
For all $i$, it holds that $1 \leq A_i \lt B_i \leq M$.

A sequence $S$ is said to be a good sequence if the following conditions are satisfied:

  • $S$ is a contiguous subsequence of the sequence $(1,2,3,..., M)$.
  • For all $i$, $S$ contains at least one of $A_i$ and $B_i$.

Let $f(k)$ be the number of possible good sequences of length $k$.
Enumerate $f(1), f(2), \dots, f(M)$.

Constraints

  • $1 \leq N \leq 2 \times 10^5$
  • $2 \leq M \leq 2 \times 10^5$
  • $1 \leq A_i \lt B_i \leq M$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

A1A_1 B1B_1

A2A_2 B2B_2

\vdots

ANA_N BNB_N

Output

Print the answers in the following format:

``` $f(1)$ $f(2)$ $\dots$ $f(M)$ ```
3 5
1 3
1 4
2 5
0 1 3 2 1

Here is the list of all possible good sequences.

  • $(1,2)$
  • $(1,2,3)$
  • $(2,3,4)$
  • $(3,4,5)$
  • $(1,2,3,4)$
  • $(2,3,4,5)$
  • $(1,2,3,4,5)$

1 2
1 2
2 1

5 9
1 5
1 7
5 6
5 8
2 6
0 0 1 2 4 4 3 2 1