#AT2095. C - 1111gal password

C - 1111gal password

当前没有测试数据。

C - 1111gal password

Score : $300$ points

Problem Statement

Given an integer $N$, find the number of integers $X$ that satisfy all of the following conditions, modulo $998244353$.

  • $X$ is an $N$-digit positive integer.
  • Let $X_1,X_2,\dots,X_N$ be the digits of $X$ from top to bottom. They satisfy all of the following:
    • $1 \le X_i \le 9$ for all integers $1 \le i \le N$;
    • $|X_i-X_{i+1}| \le 1$ for all integers $1 \le i \le N-1$.

Constraints

  • $N$ is an integer.
  • $2 \le N \le 10^6$

Input

Input is given from Standard Input in the following format:

NN

Output

Print the answer as an integer.


4
203

Some of the $4$-digit integers satisfying the conditions are $1111,1234,7878,6545$.


2
25

1000000
248860093

Be sure to find the count modulo $998244353$.