#AT2024. D - Count Interval
D - Count Interval
当前没有测试数据。
D - Count Interval
Score : $400$ points
Problem Statement
Given is a sequence of length $N$: $A=(A_1,A_2,\ldots,A_N)$, and an integer $K$.
How many of the contiguous subsequences of $A$ have the sum of $K$?
In other words, how many pairs of integers $(l,r)$ satisfy all of the conditions below?
- $1\leq l\leq r\leq N$
- $\displaystyle\sum_{i=l}^{r}A_i = K$
Constraints
- $1\leq N \leq 2\times 10^5$
- $|A_i| \leq 10^9$
- $|K| \leq 10^{15}$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
6 5
8 -3 5 7 0 -4
3
$(l,r)=(1,2),(3,3),(2,6)$ are the three pairs that satisfy the conditions.
2 -1000000000000000
1000000000 -1000000000
0
There may be no pair that satisfies the conditions.