#AT1878. B - log2(N)
B - log2(N)
B - log2(N)
Score : $200$ points
Problem Statement
Given a positive integer $N$, find the maximum integer $k$ such that $2^k \le N$.
Constraints
- $N$ is an integer satisfying $1 \le N \le 10^{18}$.
Input
Input is given from Standard Input in the following format:
Output
Print the answer as an integer.
6
2
- $k=2$ satisfies $2^2=4 \le 6$.
- For every integer $k$ such that $k \ge 3$, $2^k > 6$ holds.
Therefore, the answer is $k=2$.
1
0
Note that $2^0=1$.
1000000000000000000
59
The input value may not fit into a $32$-bit integer.